JPL SuperMOCA Demonstration Testbed

Carlos Carrión

(carlos.carrion@jpl.nasa.gov)

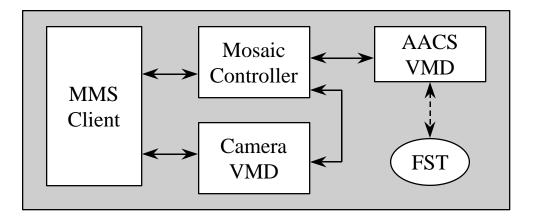
Jet Propulsion Laboratory

SCWG

June 3, 1997

<u>Agenda</u>

- Purpose of JPL Demos
- Current JPL Demo
 - Scenario Description
 - Notes
 - Configuration
- Updates to Current JPL Demo
 - Scenario Description
 - Notes
 - Configuration
- Planned JPL Demo Development
 - Scenario Description
 - Other Work in Progress
- Summary
- Next Steps


Purpose of JPL Demos

- Short Term
 - What is the set of SMS¹ services needed for space missions
 - What does it mean/take to build virtual devices for space missions
 - Viability of virtual devices for space missions
 - Applicability of device descriptions to space missions
 - Demonstrate the SuperMOCA technology areas : SMS and Information Architecture
- Long Term
 - What implications do virtual devices have on S/C design, i.e.:
 - Communications
 - Data System Architecture
 - Processing resources: computing power and memory
 - Plug 'n Play
 - What modifications to MMS² services are needed to do space missions
 - What additional MMS services are needed for space missions
 - Which MMS services are not needed for space missions
 - Mission Operations interoperability
 - Gain enough information to generate SuperMOCA specifications

1: Space Messaging System

2: Manufacturing Message Specification

Current JPL Demonstration

Current JPL Demo

Scenario Description

Objects:

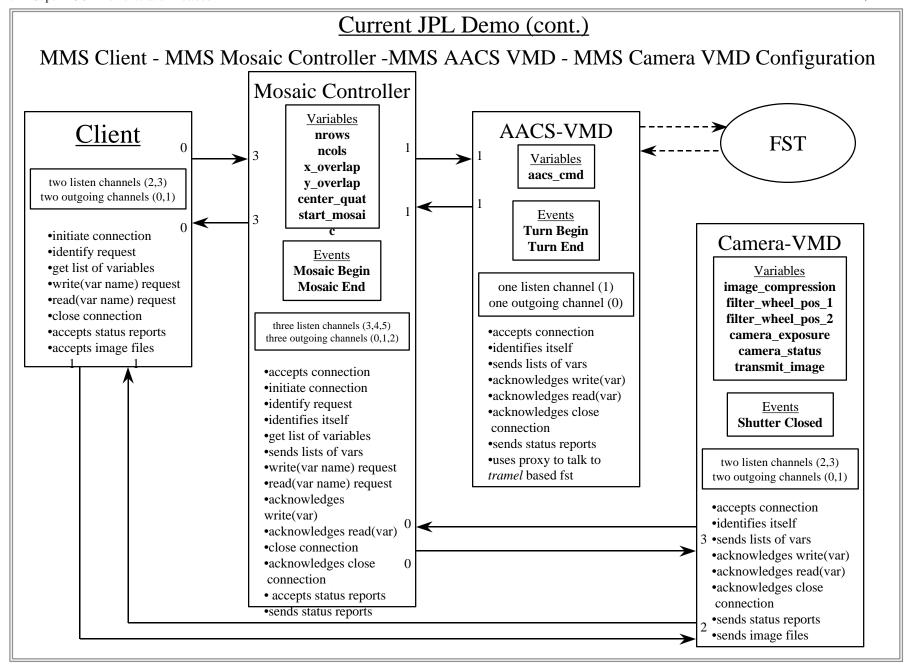
- Client
- Spacecraft:
 - Mosaic Controller
 - Attitude & Articulation Control Subsystem
 - Camera Simulator

User wants to do an $m_x n$ mosaic centered on some target:

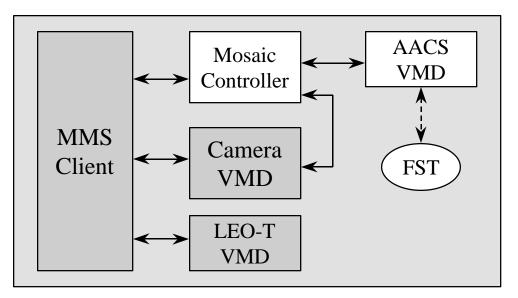
- 1. User uses the Client object to specify:
 - Number of rows, columns, overlap in x/y direction, target quaternion.
- 2. User can tell Camera Simulator object to compress the "images".
- 3. User uses the Client object to connect to the Mosaic Controller and Camera.
- 4. Client object starts the mosaic.
- 5. Mosaic Controller object controls the mosaic execution.
- 6. Mosaic Controller object notifies the Client object when the mosaic starts/ends.
- 7. User can download the "images" from the Camera Simulator.
- 8. User can tell Camera object to delete the "images" from the Camera file store.

6

Current JPL Demo (cont.)


Notes

- Camera is a simulation based on the FST¹ camera simulator flight software:
 - Images are just strings of bytes for now.
- AACS² object is used as the interface to the AACS running in the FST:
- 13 MMS services used:
 - 2 Context Management
 - 2 VMD³ Support
 - 3 Variable Access & Management
 - 3 File Access & Management
 - 3 Event & Alarm Management


1: JPL Flight System Testbed

2: Attitude & Articulation Control Subsystem

3: Virtual Manufacturing Device (or Virtual Device) see backup slides for a definition

Updates to Current JPL Demo

<u>Updates to Current JPL Demo</u>

Scenario Description

Objects:

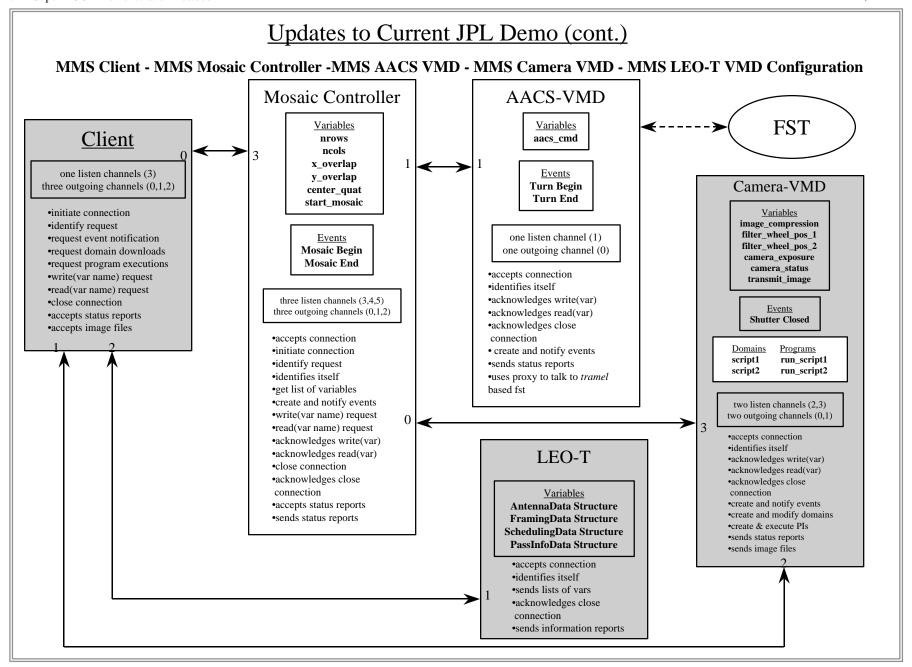
- Client
- Spacecraft:
 - Mosaic Controller
 - Attitude & Articulation Control Subsystem
 - Camera Simulator
- Ground Terminal
 - LEO-T¹ Simulator
- Same scenario as current demo with the following additions:
 - Capability to monitor (not yet control) a LEO-T station from the same MMS based client used to communicate with the S/C.
 - User able to instruct Camera Simulator to execute maintenance scripts and report results to the Client.
 - The User also is able to uplink a modified maintenance script to the Camera Simulator.

1: Low Earth Orbit Tracking Station

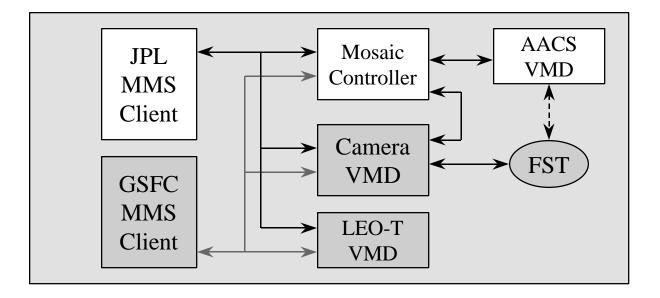
<u>Updates to Current JPL Demo (cont.)</u>

Notes

- The Program Invocation Services and Domain Management Services were used to implement the maintenance script capability. Domains are writeable.
- The LEO-T VMD is not controllable. It sends InfoReports every 60 seconds containing the following complex types:


double var1;
int var2;

char str[20];


float varn:

} Structure1;

- Antenna Data Structure
- Framing Data Structure
- Scheduling Data Structure
- Pass Info Type Structure
- This demonstrates the cability of downlinking complex types to the Client.
- 18 MMS services used.
 - 2 Context Management
 - 2 VMD Support
 - 3 Variable Access & Management
 - 3 File Access & Management
 - 3 Event & Alarm Management
 - 3 Domain Management
 - 2 Program Invocation
- Porting Demonstration to the JPL-SMOCC¹. Currently running on SunOS based SUN SPARC.
 - 1: Simulated Mission Operations Control Center

Planned JPL Demo Development

Planned JPL Demo Development

Scenario Description

Objects:

- Client (JPL and GSFC)
- Spacecraft:
 - Mosaic Controller
 - Attitude & Articulation Control Subsystem
 - Camera Simulator
- Low Earth Orbit Tracking Station
- Same scenario as previous demo with the following additions:
 - Modify Camera VMD to allow images (created by the FST scene generator) to be returned by the Camera VMD to the Client.
 - Implement Camera simulator device description language "database" in the demo. This will allow "automatic" configuration of the Camera VMD based on the contents of the device description.
 - GSFC will be able to monitor and control the JPL demo remotely.

Planned JPL Demo Development (cont.)

- Goddard Space Flight Center work in progress:
 - Windows based MMS client object running with Labview GUI.
 - GUI/DDL¹ Interface
 - Implementing LEO-T data types.
 - Will demonstrate interoperability: Different NASA centers can monitor and control the JPL demo and configure their Client GUI from DDL information.
 - MMS Connectivity between GSFC and JPL-SMOCC achieved 2 weeks ago.
- LEO-T simulator will be replaced with the actual station application software.

1: Device Description Language

Summary

Current JPL demo

• Rudimentary mosaic capability using 13 MMS services.

• Updates to JPL demo

- •Additional camera simulator capabilities implemented.
- LEO-T simulator added.
- 18 MMS services being used.

• Planned development

- Add the ability to return real images from camera simulator.
- Add device description capability.
- Replace LEO-T simulator with "real" thing.
- Implement interface between GUI/DDL.
- Continue GSFC work to demonstrate interoperability.

Next Steps

- Add more devices to the Demo
 - S/W simulation
 - FST simulated devices
 - Real devices
 - Possible cooperation with X2000
- Proposal for LEO-T control.